Nested cubic roots.

https://www.linkedin.com/feed/update/urn:li:activity:6463695029771870208

Let
$$a_n := \sqrt[3]{1 + \sqrt[3]{2 + \sqrt[3]{3 + \sqrt[3]{4 + \ldots + \sqrt[3]{n}}}}}$$
, $n \in \mathbb{N}$.

Prove that:

- **(1)** $a_{n+1}^3 < 1 + \sqrt[3]{2} \cdot a_n$ for any $n \in \mathbb{N}$;
- (2) Sequence $(a_n)_{\mathbb{N}}$ is convergent.

Solution by Arkady Alt , San Jose, California, USA

1. Noting that $k \le 2^{3^{k-2}}(k-1)$ for any $k \in \mathbb{N} \setminus \{1\}$ (equality holds only if k=2)

we obtain
$$a_{n+1}^3 = 1 + \sqrt[3]{2 + \sqrt[3]{3 + \sqrt[3]{4 + \ldots + \sqrt[3]{n + \sqrt[3]{n + 1}}}}} < 1 + \sqrt[3]{2 + \sqrt[3]{2^{3^{3-2}} \cdot 2 + \sqrt[3]{2^{3^{4-2}} \cdot 3 + \ldots + \sqrt[3]{2^{3^{n-2}}(n-1) + \sqrt[3]{2^{3^{n-1}} \cdot n}}}} = 1 + \sqrt[3]{2 + \sqrt[3]{2^{3^{3-2}} \cdot 2 + \sqrt[3]{2^{3^{4-2}} \cdot 3 + \ldots + \sqrt[3]{2^{3^{n-2}}(n-1) + 2^{3^{n-2}}\sqrt[3]{n}}}}} = 1$$

$$1 + \sqrt[3]{2 + \sqrt[3]{2^{3^{3-2}} \cdot 2 + \sqrt[3]{2^{3^{4-2}} \cdot 3 + \ldots + 2^{3^{n-3}}} \sqrt[3]{(n-1) + \sqrt[3]{n}}}} = \ldots =$$

$$1 + \sqrt[3]{2 + 2\sqrt[3]{2 + \sqrt[3]{3 + \ldots + \sqrt[3]{(n-1) + \sqrt[3]{n}}}}} = 1 + \sqrt[3]{2} \cdot a_n.$$

2. First we will prove that $a_n < \sqrt[3]{4}$ for any $n \in \mathbb{N}$.

Indeed,
$$a_1 = 1 < \sqrt[3]{4}$$
 and $a_2 = \sqrt[3]{1 + \sqrt[3]{2}} < \sqrt[3]{4} \iff \sqrt[3]{2} < 3$.

For any $n \in \mathbb{N}$ assuming $a_n < \sqrt[3]{4}$ we obtain

$$a_{n+1}^3 < 1 + \sqrt[3]{2} \cdot a_n < 1 + \sqrt[3]{2} \cdot \sqrt[3]{4} = 3$$
 and, therefore, $a_{n+1} < \sqrt[3]{3} < \sqrt[3]{4}$.

Thus, by Math Induction, $a_n < \sqrt[3]{4}$ for any $n \in \mathbb{N}$ and since $a_{n+1} > a_n$ for any $n \in \mathbb{N}$ we can conclude that sequence $(a_n)_{\mathbb{N}}$ is convergent as increasing and bounded from above.